Thursday, 27 November 2014

Webscraping using readLines and RCurl

There is a massive amount of data available on the web. Some of it is in the form of precompiled, downloadable datasets which are easy to access. But the majority of online data exists as web content such as blogs, news stories and cooking recipes. With precompiled files, accessing the data is fairly straightforward; just download the file, unzip if necessary, and import into R. For “wild” data however, getting the data into an analyzeable format is more difficult. Accessing online data of this sort is sometimes reffered to as “webscraping”. Two R facilities, readLines() from the base package and getURL() from the RCurl package make this task possible.

readLines

For basic webscraping tasks the readLines() function will usually suffice. readLines() allows simple access to webpage source data on non-secure servers. In its simplest form, readLines() takes a single argument – the URL of the web page to be read:

web_page <- readLines("http://www.interestingwebsite.com")

As an example of a (somewhat) practical use of webscraping, imagine a scenario in which we wanted to know the 10 most frequent posters to the R-help listserve for January 2009. Because the listserve is on a secure site (e.g. it has https:// rather than http:// in the URL) we can't easily access the live version with readLines(). So for this example, I've posted a local copy of the list archives on the this site.

One note, by itself readLines() can only acquire the data. You'll need to use grep(), gsub() or equivalents to parse the data and keep what you need.

# Get the page's source
web_page <- readLines("http://www.programmingr.com/jan09rlist.html")
# Pull out the appropriate line
author_lines <- web_page[grep("<I>", web_page)]
# Delete unwanted characters in the lines we pulled out
authors <- gsub("<I>", "", author_lines, fixed = TRUE)
# Present only the ten most frequent posters
author_counts <- sort(table(authors), decreasing = TRUE)
author_counts[1:10]
[webscrape results]


We can see that Gabor Grothendieck was the most frequent poster to R-help in January 2009.

The RCurl package

To get more advanced http features such as POST capabilities and https access, you'll need to use the RCurl package. To do webscraping tasks with the RCurl package use the getURL() function. After the data has been acquired via getURL(), it needs to be restructured and parsed. The htmlTreeParse() function from the XML package is tailored for just this task. Using getURL() we can access a secure site so we can use the live site as an example this time.

# Install the RCurl package if necessary
install.packages("RCurl", dependencies = TRUE)
library("RCurl")
# Install the XML package if necessary
install.packages("XML", dependencies = TRUE)
library("XML")
# Get first quarter archives
jan09 <- getURL("https://stat.ethz.ch/pipermail/r-help/2009-January/date.html", ssl.verifypeer = FALSE)
jan09_parsed <- htmlTreeParse(jan09)
# Continue on similar to above
...

For basic webscraping tasks readLines() will be enough and avoids over complicating the task. For more difficult procedures or for tasks requiring other http features getURL() or other functions from the RCurl package may be required. For more information on cURL visit the project page here.

Source: http://www.r-bloggers.com/webscraping-using-readlines-and-rcurl-2/

Monday, 17 November 2014

Scraping websites using the Scraper extension for Chrome

If you are using Google Chrome there is a browser extension for scraping web pages. It’s called “Scraper” and it is easy to use. It will help you scrape a website’s content and upload the results to google docs.

Walkthrough: Scraping a website with the Scraper extension
  •     Open Google Chrome and click on Chrome Web Store
  •     Search for “Scraper” in extensions
  •     The first search result is the “Scraper” extension
  •     Click the add to chrome button.
  •     Now let’s go back to the listing of UK MPs
  •     Open http://www.parliament.uk/mps-lords-and-offices/mps/
  •     Now mark the entry for one MP
  •     http://farm9.staticflickr.com/8490/8264509932_6cc8802992_o_d.png
  •     Right click and select “scrape similar…”
  •     http://farm9.staticflickr.com/8200/8264509972_f3a9e5d8e8_o_d.png
  •     A new window will appear – the scraper console
  •     http://farm9.staticflickr.com/8073/8263440961_9b94e63d56_b_d.jpg
  •     In the scraper console you will see the scraped content
  •     Click on “Save to Google Docs…” to save the scraped content as a Google Spreadsheet.
Walkthrough: extended scraping with the Scraper extension

Note: Before beginning this recipe – you may find it useful to understand a bit about HTML. Read our HTML primer.

Easy wasn’t it? Now let’s do something a little more complicated. Let’s say we’re interested in the roles a specific actress played. The source for all kinds of data on this is the IMDB (You can also search on sites like DBpedia or Freebase for this kinds of information; however, we’ll stick to IMDB to show the principle)

    Let’s say we’re interested in creating a timeline with all the movies the Italian actress Asia Argento ever starred; where do we start?

    The IMDB has a quite comprehensive archive of actors. Asia Argento’s site is: http://www.imdb.com/name/nm0000782/

    If you open the page you’ll see all the roles she ever played, together with a title and the year – let’s scrape this information

    Try to scrape it like we did above

    You’ll see the list comes out garbled – this is because the list here is structured quite differently.

    Go to the scraper console. Notice the small box on the upper left, saying XPath?

    XPath is a query language for HTML and XML.

    XPath can help you find the elements in the page you’re interested in – all you need to do is find the right element and then write the xpath for it.

    Now let’s assemble our table.

    You’ll see that our current Xpath – the one including the whole information is “//div[3]/div[3]/div[2]/div”

    http://farm9.staticflickr.com/8344/8264510130_ae31697fde_o_d.png

    Xpath is very simple it tells the computer to look at the HTML document and select <div> element number 3, then in this the third one, the second one and then all <div> elements (which if you count down our list, results in exactly where you are right now.
  •     However, we’d like to have the data separated out.
  •     To do this use the columns part of the scraper console…
  •     Let’s find our title first – look at the title using Inspect Element
  •     http://farm9.staticflickr.com/8355/8263441157_b4672d01b2_o_d.png
  •     See how the title is within a <b> tag? Let’s add the tag to our xpath.
  •     The expression seems to work well: let’s make this our first column
  •     In the “Columns” section, change the name of the first column to “title”
  •     Now let’s add the XPATH for the title to it
  •     The xpaths in the columns section are relative, that means “./b” will select the <b> element
  •     add “./b” to the xpath for the title column and click “scrape”
  •     http://farm9.staticflickr.com/8357/8263441315_42d6a8745d_o_d.png
  •     See how you only get titles?
  •     Now let’s continue for year? Years are within one <span>
  •     Create a new column by clicking on the small plus next to your “title” column
  •     Now create the “year” column with xpath “./span”
  •     http://farm9.staticflickr.com/8347/8263441355_89f4315a78_o_d.png
  •     Click on scrape and see how the year is added
  •     See how easily we got information out of a less structured webpage?
Source: http://schoolofdata.org/handbook/recipes/scraper-extension-for-chrome/

Thursday, 13 November 2014

Big Data Democratization via Web Scraping

Big Data Democratization via Web Scraping

If  we had to put democratization of data inline with the classroom definition of democracy, it would read- Data by the people, for the people, of the people. Makes a lot of sense, doesn’t it? It resonates with the generic feeling we have these days with respect to easy access to data for our daily tasks. Thanks to the internet revolution, and now the social media.

Big-data-crawling

Big Data web Crawling

By the people- most of the public data on the web is a user group’s sentiments, analyses and other information.

Of the people- Although the “of” here does not literally mean that the data is owned, all such data on the internet either relates to the user group itself or its views on things.

For the people- Most of this data is presented via channels (either social media, news, etc.) for public benefit be it travel tips, daily news feeds, product price comparisons, etc.

Essentially, data democratization has come to mean that by leveraging cloud computing, data that’s mostly user-generated on the internet has become accessible by all industries- big or small for their own internal use (commercial or not). This democratization has been put to use for unearthing hidden patterns from big blobs of datasets. Use cases have evolved with the consumer internet landscape and Big Data is now being used for various other means quite unanticipated.

With respect to the democratization, we’ve also heard enough about how data analytics is paving way beyond data analysts within companies and becoming available to even the non-tech-savvies. But did anyone mention DaaS providers who aid in the very first phase of data acquisition? Data scraping or web crawling (whatever your lingo is) has come to become an indivisible part of data democratization, especially when talking large-scale. The first step into bringing the public data to use is acquiring it which is where setting up web crawlers internally or partnering with DaaS providers comes to play. This blog guides towards making a choice. Its not always all the data that companies crunch or should crunch from the web. There’s obviously certain channels that are of more interest to the community than the rest and there lies the barrier- to identify sources of higher ROI and acquire data in a machine-readable format.

DaaS providers usually come to help with the entire data acquisition pipeline- starting from picking the right sources through crawl, extraction, dedup as well as data normalization based on specific requirements. Once the data has been acquired, its most likely published on another channel. Such network effect bolsters the democracy.

Steps in Data Acquisition Pipeline

crawl-extract-norm

Note- PromptCloud only delivers structured data as per the schema provided.

So while democratization may refer to easy access of computing resources in order to draw patterns from Big Data, it could also be analogous to ensuring right data in the right format at right intervals. In fact, DaaS providers have themselves used this democracy to empower it further.

Source:https://www.promptcloud.com/blog/big-data-democratization-using-web-scraping-2/

Wednesday, 12 November 2014

Web scraping services-importance of scraped data

Web scraping services are provided by computer software which extracts the required facts from the website. Web scraping services mainly aims at converting unstructured data collected from the websites into structured data which can be stockpiled and scrutinized in a centralized databank. Therefore, web scraping services have a direct influence on the outcome of the reason as to why the data collected in necessary.

It is not very easy to scrap data from different websites due to the terms of service in place. So, the there are some legalities that have been improvised to protect altering the personal information on different websites. These ‘rules’ must be followed to the letter and to some extent have limited web scraping services.

Owing to the high demand for web scraping, various firms have been set up to provide the efficient and reliable guidelines on web scraping services so that the information acquired is correct and conforms to the security requirements. The firms have also improvised different software that makes web scraping services much easier.

Importance of web scraping services

Definitely, web scraping services have gone a long way in provision of very useful information to various organizations. But business companies are the ones that benefit more from web scraping services. Some of the benefits associated with web scraping services are:

    Helps the firms to easily send notifications to their customers including price changes, promotions, introduction of a new product into the market. Etc.
    It enables firms to compare their product prices with those of their competitors
    It helps the meteorologists to monitor weather changes thus being able to focus weather conditions more efficiently
    It also assists researchers with extensive information about peoples’ habits among many others.
    It has also promoted e-commerce and e-banking services where the rates of stock exchange, banks’ interest rates, etc. are updated automatically on the customer’s catalog.

Advantages of web scraping services

The following are some of the advantages of using web scraping services

    Automation of the data

    Web scraping can retrieve both static and dynamic web pages

    Page contents of various websites can be transformed

    It allows formulation of vertical aggregation platforms thus even complicated data can still be extracted from different websites.

    Web scraping programs recognize semantic annotation

    All the required data can be retrieved from their websites

    The data collected is accurate and reliable

Web scraping services mainly aims at collecting, storing and analyzing data. The data analysis is facilitated by various web scrapers that can extract any information and transform it into useful and easy forms to interpret.

Challenges facing web scraping

    High volume of web scraping can cause regulatory damage to the pages

    Scale of measure; the scales of the web scraper can differ with the units of measure of the source file thus making it somewhat hard for the interpretation of the data

    Level of source complexity; if the information being extracted is very complicated, web scraping will also be paralyzed.

It is clear that besides web scraping providing useful data and information, it experiences a number of challenges. The good thing is that the web scraping services providers are always improvising techniques to ensure that the information gathered is accurate, timely, reliable and treated with the highest levels of confidentiality.

Source: http://www.loginworks.com/blogs/web-scraping-blogs/191-web-scraping-services-importance-of-scraped-data/

Friday, 7 November 2014

Web Scraping Enters Politics

Web scraping is becoming an essential tool in gaining an edge over everything about just anything. This is proven by international news on US political campaigns, specifically by identifying wealthy donors. As is commonly known, election campaigns should follow a rule regarding the use of a certain limited amount of money for the expenses of each candidate. Being so, much of the campaign activities must be paid by supporters and sponsors.

It is not a surprise then that even politics is lured to make use of the dynamic and ever growing data mining processes. Once again, web mining has proven to be an essential component of almost all levels of human existence, the society, and the world as a whole. It proves its extraordinary capacity to dig precious information to reach the much aspired for goals of every individual.

Mining for personal information

The CBC News online very recently disclosed that the US Republican presidential candidate Mitt Romney has used data mining in order to identify rich donors. It is reported that the act of getting personal information such as the buying history and church attendance were vital in this incident. Through this information, the party was able to identify prospective rich donors and indeed tap them. As a businessman himself, Romney knows exactly how to fish and where the fat fish are. Moreover, what is unique about the identified donors is that they have never been donating before.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/web-scraping-enters-politics/